
Better (and Cheaper!)
Content Storage with
Amazon S3, CloudFront,
and ColdFusion

Brian Klaas
Johns Hopkins Bloomberg School of Public Health
bklaas@jhsph.edu
@brian_klaas

The Problem

I need to upload a !le

1
The Problem

How big will the !les be?
How many !les?

What’s the projected growth?

1
The Problem

Is the drive big enough?

1
The Problem

Free Space
2%

Used Space
98%

Storage is cheap.

1
The Problem

But you’ve got to manage it.

Set up redundant storage

1
The Problem

■ SAN

■ High–Speed I/O to servers

■ Multiple nodes in the data center

■ Authentication and authorization

What happens when they stop
uploading Word !les and start

uploading PDFs? ZIP !les? MP4s?

1
The Problem

You can't delete anything.

1
The Problem

EVER

What about bandwidth costs?

1
The Problem

What about my customers
in China?

1
The Problem

in Australia?
in Brazil?

in Ireland?

$
1

The Problem

A solution from AWS

1
The Problem

AWS + S3 + CloudFront

EC2 Route
53

VPC
Elastic
Map

Reuce

Direct
Connect

Cloud
Formation

Cloud
Watch

Data
Pipeline

Elastic
Bean
Stalk

IAM Ops
Works

Cloud
Search

Elastic
Transcoder SES SNS SQS SWF

Dynamo
DB

Elasti
Cache RDS Redshift

Cloud
Front Glacier S3 Storage

Gateway

2
AWS Overview

S3: Store all the things

1 byte

2
AWS Overview

5 terabytes

Regions

2
AWS Overview

■ US Standard (NoVA or
Washington)

■ US West (Oregon)

■ US West (NorCal)

■ EU (Ireland)

■ Asia Paci!c (Singapore)

■ Asia Paci!c (Sydney)

■ Asia Paci!c (Tokyo)

■ South America (São
Paulo)

Versioning

2
AWS Overview

Static website hosting

2
AWS Overview

99.999999999% durability*

2
AWS Overview

99.99% availability

*Yes, stuff can get lost.

$0.095 per GB

$0.01 per 10,000 GET

$0.01 per 1,000 PUT

$0.12 per GB out after 1GB

2
AWS Overview

2
AWS Overview

CloudFront:
Distribute all the things

2
AWS Overview

Would you prefer...?

Beijing

Hong Kong

Seattle

Washington, DC

Raleigh

Beijing

Hong Kong

2
AWS Overview

Origin

CloudFront Distribution

Edge Farm Edge Farm Edge Farm Edge Farm Edge Farm Edge Farm

Conditional GET

2
AWS Overview

Download

Streaming (via FMS)

2
AWS Overview

Current CloudFront Server Farms

2
AWS Overview

CloudFront Pricing

2
AWS Overview

AWS Overview

AWS

IAM

S3

CloudFront

2

AWS is
HTTP–based Development

2
AWS Overview

2
AWS Overview

PUT /photos/puppy.jpg HTTP/1.1
Content-Type: image/jpeg
Content-Length: 94328
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:15:45 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
MyyxeRY7whkBe+bq8fHCL/2kKUg=

AWS SDKs for:

2
AWS Overview

■ Java*

■ PHP

■ Ruby

■ Node.js

■ Python

■ .NET

■ Android

■ iOS

*ColdFusion

AWS Account Security

Master AWS Account

3
AWS Account Security

IAM Account Key Pair

Access Key
Secret Key

Key Pair ID
Public Key
Private Key

IAM accounts can create other IAM accounts

Master AWS account can create key pairs

3
AWS Account Security

S3: IAM accounts

CloudFront: Key pairs

3
AWS Account Security

Master AWS Account

3
AWS Account Security

Groups ACL

Authenticated Users
All Users

Log Delivery
Policies

Sample Policy

3
AWS Account Security

{
 "Version":"2008-10-17",
 "Statement":[{
 "Sid":"AddPerm",
 "Effect":"Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action":["s3:GetObject"],
 "Resource":["arn:aws:s3:::bucket/*"
]
 }
]
}

Requests from a Speci!c Domain Policy

3
AWS Account Security

{
 "Version":"2008-10-17",
 "Id":"http referer policy example",
 "Statement":[
 {
 "Sid":"Allow get requests referred by www.mysite.com
and mysite.com",
 "Effect":"Allow",
 "Principal":"*",
 "Action":"s3:GetObject",
 "Resource":"arn:aws:s3:::example-bucket/*",
 "Condition":{
 "StringLike":{
 "aws:Referer":[
 "http://www.mysite.com/*",
 "http://mysite.com/*"
]
 }
 }
 }
]
}

Working with S3

4
Working with S3

Bucket

my!les.s3.amazonaws.com

4
Working with S3

Bucket

Object

4
Working with S3

Everything is an object

4
Working with S3

Objects have metadata

Everything in S3 is
private by default.

4
Working with S3

4
Working with S3

4
Working with S3

http://mybucket.s3.amazonaws.com/
path/to/file.png

4
Working with S3

Sample .NET Request

BasicAWSCredentials basicCredentials = new
BasicAWSCredentials("*** Access Key ID ***", "***
Security Access Key ***");

AmazonS3Client s3Client = new
AmazonS3Client(basicCredentials);

var response = s3Client.ListBuckets();

4
Working with S3

Sample Java Request

AWSCredentials myCredentials = new
BasicAWSCredentials(myAccessKeyID, mySecretKey);

AmazonS3 s3client = new
AmazonS3Client(myCredentials);

List <Buckets> = s3client.listBuckets();

4
Working with S3

C:/

s3://

4
Working with S3

Basic ColdFusion Integration

<cffile action=“read”
file=“s3://somebucket/somefile.txt”
variable=“fileData” />

<cffile action=“write”
file=“s3://somebucket/somefile.txt”
output=“#someStuff#” />

4
Working with S3

Basic ColdFusion Integration

<cffile action=“delete”
file=“s3://somebucket/somefile.txt” />

<cffile action=“copy”
source=“s3://somebucket/somefile.txt”
destination=“s3://anotherbucket/
someCopy.txt” />

4
Working with S3

Basic ColdFusion Integration

<cfdirectory action=“create”
directory=“s3://somebucket/
someDirectory” />

<cfdirectory action=“list”
directory=“s3://somebucket/
someDirectory” />

4
Working with S3

ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
 <cfset perms = [
 {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
]>
 <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt",
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>

4
Working with S3

Tags Which Support S3

■ cffile*

■ cfdirectory

■ cfdocument

■ cfftp

■ cffeed

■ c!mage

■ c$oop†

*Except rename
† Looping over directory information

4
Working with S3

Functions Which Support S3
■ !leOpen

■ !leClose

■ !leCopy

■ !leDelete

■ !leExists

■ !leisEOF

■ !leMove

■ !leWrite

■ !leRead

■ !leReadBinary

■ !leReadLine

■ !leSetLastModi!ed

■ getFileInfo

■ getDirectoryFromPath

■ directoryCreate

■ directoryDelete

■ directoryExists

■ directoryList

■ imageNew

■ imageRead

■ imageWrite

■ imageWriteBase64

■ isImageFile

■ isPDFFile

4
Working with S3

Don’t you need credentials?

4
Working with S3

Setting AWS IAM credentials

1. In the individual S3 call

2. In application.cfc

4
Working with S3

Setting AWS IAM credentials

<cffile action=“read”
file=“s3://
accessKeyId:awsSecretKey@somebucket/
somefile.txt” variable=“fileData” />

4
Working with S3

Setting AWS IAM credentials

In application.cfc:

this.s3.accessKeyId="accessKey";
this.s3.awsSecretKey="secretKey";

4
Working with S3

ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
 <cfset perms = [
 {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
]>
 <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt",
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>

Everything in S3 is
private by default.

4
Working with S3

4
Working with S3

ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
 <cfset perms = [
 {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
]>
 <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt",
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>

4
Working with S3

Get ACL with storeGetACL()

Set ACL with storeSetACL()

4
Working with S3

Setting permissions with ACLs

<cfset permissions = storeGetACL(fileOnS3) />
<cfset arrayAppend(permissions,
{group="all",permission="read"}) />
<cfset storeSetACL(fileOnS3, "#permissions#") />

4
Working with S3

Get object metadata with
storeGetMetadata()

Set object metadata with
storeSetMetadata()

4
Working with S3

<cfset metadataStruct.content_type=
"video/webm" />
<cfset storeSetMetadata(s3File,
"#metadataStruct#") />

Setting content type

4
Working with S3

Standard Keys in S3 Metadata

■ last_modi!ed

■ date

■ owner

■ etag

■ content_length

■ content_type

■ content_encoding

■ content_disposition

■ content_language

■ content_md5

■ md5_hash

4
Working with S3

Multiparting Large Uploads

this.s3.minsizeformultipart=10;

*CF10–only

Files above this size (in MB) will
be split and sent in parallel.

4
Working with S3

ACF 9.0.1/2 bug

Solution: Get your current ACL,
make the metadata change, then set the ACL again

2
AWS Overview

S3: The Next Level

4
Working with S3

Custom Signing Requests

4
Working with S3

Custom Signing Requests

Signature = Base64(
HMAC-SHA1(YourSecretAccessKeyID, UTF-8-Encoding-
Of(StringToSign))
);

StringToSign = HTTP-Verb + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Date + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;

4
Working with S3

Expiring the URL

4
Working with S3

Expiring the URL

1. Specify the object URL

2. Specify an expiration time for the request

3. Sign the request with your IAM secret key
using HMAC encoding

4. Make the HTTP call

http://bucket.s3.amazonaws.com/someObject?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=117736
3698&Signature=vjSAMPLENmGa%2ByT272YEAiv4%3D

4
Working with S3

Changing !le properties
on a per-request basis

■ File name

■ Content–disposition

■ MIME–type

■ Adding custom metadata

4
Working with S3

Changing !le properties per request

1. Specify the object URL

2. Specify your request headers

3. Sign the request with your IAM secret key
using HMAC encoding

4. Make the HTTP call

4
Working with S3

S3RequestSigningUtils on GitHub

github.com/brianklaas/ctlS3Utils

*Requires CF10

4
Working with S3

Direct Upload to S3
from the Browser

www.bennadel.com/blog/2500-Uploading-Files-To-Amazon-S3-
Using-A-Form-Post-And-ColdFusion.htm

4
Working with S3

Upload to S3 from the Browser

■ Can upload only one !le at a time.

■ Must specify the policy for the upload.

■ You still need to generate an authorization signature on
the server and embed that as a form parameter.

■ Provide a success URL in the form. AWS posts the bucket
and key to that URL on successful upload.

■ Failures are returned as the typical AWS error XML
structure.

2
AWS Overview

S3: Issues to Consider

4
Working with S3

What happens
when an upload fails?

4
Working with S3

S3 is storage, not a !le system

Can get basic !le info with
<cfhttp url="http://bucket.s3.amazonaws.com/!lename" method="head">

4
Working with S3

What happens
when AWS goes down?

Working with
CloudFront

Working with CloudFront

AWS

IAM

S3

CloudFront

5

CloudFront Work$ow

5
Working with CloudFront

1. Put !les in your origin (S3).

2. Make the objects accessible.

3. Create a CloudFront distribution pointing at
your origin.

4. Use URLs with the CloudFront distribution
domain.

http://d1xrz3abcdef8.cloudfront.net/image.jpg

5
Working with CloudFront

If S3 is the origin for your CloudFront
distribution, the bucket name is embedded

in the CloudFront distribution domain name.

Use the full path to the !le here,
including folder name(s).

Custom domain names

5
Working with CloudFront

Default TTL = 24 hours

5
Working with CloudFront

5
Working with CloudFront

CloudFront: The Next Level

Changing the TTL

5
Working with CloudFront

Versioning

5
Working with CloudFront

?ver=2

Custom HTTP headers

5
Working with CloudFront

?response-content-disposition=attachment;
!lename=someNewFileName.mp4

Protecting For–Fee Content

5
Working with CloudFront

CloudFront distributions which
allow signed requests have

additional setup parameters.

5
Working with CloudFront

(See the docs.)

Signing the Request
5

Working with CloudFront

1. Specify the object URL
2. Specify an expiration time for the request
3. Sign the request with the CloudFront private key

from a trusted signer using HMAC encoding
4. Make the HTTP call

https://d1y9l76vzamjxr.cloudfront.net/sample.pdf?ver=2&
response-content-disposition=attachment%3Bfilename
%3DtotalExample.mp4
&Expires=1384467600
&Signature=DAQ5Eoy-
cKV0pqqaOxh199mHofuYEud3q4MzCHH4IKJqn25P8NJG1RbWPzkw0Dlp~PaUUl09Enq
O7BEvKnjcx-pivmDkpZ9N9-
wq44Ez09q088LaTuP31aXMSoS1~AMyR1zsvTuwkrmwrIucXPiOYiiQaidtgyFdtSRiV
uJaLaY_
&Key-Pair-Id=APKAIZXDNAH35HHVJAZQ

CloudFront Private Key?

5
Working with CloudFront

Master AWS Account

3
AWS Account Security

IAM Account Key Pair

Access Key
Secret Key

Key Pair ID
Public Key
Private Key

Trusted Signer?

5
Working with CloudFront

S3: Origin Access Identity

5
Working with CloudFront

 CloudFront key pair
+ Trusted signer
+ Origin Access Identity
= Signed CloudFront URLs

5
Working with CloudFront

Use a library for this.

5
Working with CloudFront

(Seriously.)

CloudFront Libraries

5
Working with CloudFront

■ .NET — ThreeSharp

■ Java — JetS3t

■ PHP — AWS Samples

■ Ruby — RightScale gem

+ regular AWS SDKs

5
Working with CloudFront

CTL CloudFrontUtils on GitHub

github.com/brianklaas/ctlCloudFrontUtils

*Requires AWS SDK and CF10

5
Working with CloudFront

CTL CloudFrontUtils on GitHub

<cfset cfUtilsObj = new ctlCloudFrontUtils(initArgs) />

<cfset argCol = structNew() />
<cfset argCol.originFilePath = "sample.pdf" />
<cfset argCol.expiresOnDate = DateAdd("n", 1, Now()) />
<cfset argCol.objectVersion = 3 />
<cfset argCol.isAttachment = true />
<cfset argCol.fileNameToUse = "lecture1a.pdf" />

<cfset signedURL =
cfUtilsObj.createSignedURL(argumentCollection =
argCol) />

5
Working with CloudFront

The Full Rundown on Setting Up
a CloudFront Distribution for

Signed URLs and Using the CTL
CloudFront Utils

www.iterateme.com/blog/index.cfm/2013/2/11/Creating-Signed-
URLs-for-Amazon-CloudFront-in-ColdFusion

5
Working with CloudFront

CloudFront: Issues to Consider

Everything fails.

5
Working with CloudFront

Multiple distributions, balanced.

5
Working with CloudFront

*Requires external load balancing.

Use a custom domain name.

5
Working with CloudFront

S3 as a CDN vs. CloudFront

5
Working with CloudFront

Go Do

Session Evaluation

ncdevcon.com/sessions/

Thank you!

Brian Klaas
Johns Hopkins Bloomberg School of Public Health
bklaas@jhsph.edu
@brian_klaas
www.iterateme.com
github.com/brianklaas

■ AWS Management Console
http://aws.amazon.com/console/

■ AWS Documentation
http://aws.amazon.com/documentation/

■ AWS SDK’s
http://aws.amazon.com/tools/

■ ColdFusion ACL Object Information
http://help.adobe.com/en_US/ColdFusion/9.0/Developing/
WSd160b5fdf5100e8f79a619d71281e7d6c97-8000.html

■ Adobe CF 9.0.1/2 storeSetMetadata() Bug
http://www.raymondcamden.com/index.cfm/2011/2/7/ColdFusion-S3-
Implementation-bug-with-metadata-and-ACLs

Resources Used in Building this Presentation

■ Direct Upload to S3 Using Fine Uploader
http://blog.!neuploader.com/2013/08/16/!ne-uploader-s3-upload-
directly-to-amazon-s3-from-your-browser/

■ Ben Nadel’s Example of Direct Upload to S3 Using Plupload
http://www.bennadel.com/blog/2502-Uploading-Files-To-Amazon-S3-
Using-Plupload-And-ColdFusion.htm

■ Creating a CloudFront Download Distribution
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
CreatingDownloadDistributions.html

■ Setting up a CloudFront Distribution for Signed URLs
http://www.iterateme.com/blog/index.cfm/2013/2/11/Creating-Signed-
URLs-for-Amazon-CloudFront-in-ColdFusion

Resources Used in Building this Presentation

■ CloudFront Libraries
http://aws.amazon.com/code/CloudFront

■ ColdFusion 10 Documentation on Using S3
https://learn.adobe.com/wiki/display/coldfusionen/Optimizing
+ColdFusion+applications

Resources Used in Building this Presentation

