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The Problem



I need to upload a !le

1
The Problem



How big will the !les be?
How many !les?

What’s the projected growth?
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Is the drive big enough?

1
The Problem

Free Space
2%

Used Space
98%



Storage is cheap.
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But you’ve got to manage it.



Set up redundant storage
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■ SAN

■ High–Speed I/O to servers

■ Multiple nodes in the data center

■ Authentication and authorization



What happens when they stop 
uploading Word !les and start 

uploading PDFs? ZIP !les? MP4s?
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You can't delete anything.
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EVER



What about bandwidth costs?
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What about my customers 
in China?
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in Australia?
in Brazil?

in Ireland?



$
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A solution from AWS
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AWS + S3 + CloudFront



EC2 Route 
53

VPC
Elastic 
Map 

Reuce

Direct
Connect

Cloud 
Formation

Cloud 
Watch

Data 
Pipeline

Elastic 
Bean
Stalk

IAM Ops
Works

Cloud 
Search

Elastic 
Transcoder SES SNS SQS SWF

Dynamo
DB

Elasti
Cache RDS Redshift

Cloud
Front Glacier S3 Storage

Gateway



2
AWS Overview

S3: Store all the things



1 byte
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5 terabytes



Regions

2
AWS Overview

■ US Standard (NoVA or 
Washington)

■ US West (Oregon)

■ US West (NorCal)

■ EU (Ireland)

■ Asia Paci!c (Singapore)

■ Asia Paci!c (Sydney)

■ Asia Paci!c (Tokyo)

■ South America (São 
Paulo)



Versioning
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Static website hosting
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99.999999999% durability*
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99.99% availability

*Yes, stuff can get lost.



$0.095 per GB

$0.01 per 10,000 GET

$0.01 per 1,000 PUT

$0.12 per GB out after 1GB
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CloudFront:
Distribute all the things
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Would you prefer...?

Beijing

Hong Kong

Seattle

Washington, DC

Raleigh

Beijing

Hong Kong
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Origin

CloudFront Distribution

Edge Farm Edge Farm Edge Farm Edge Farm Edge Farm Edge Farm



Conditional GET
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Download

Streaming (via FMS)
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Current CloudFront Server Farms
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CloudFront Pricing
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AWS Overview

AWS

IAM

S3

CloudFront
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AWS is 
HTTP–based Development
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PUT /photos/puppy.jpg HTTP/1.1
Content-Type: image/jpeg
Content-Length: 94328
Host: johnsmith.s3.amazonaws.com
Date: Tue, 27 Mar 2007 21:15:45 +0000

Authorization: AWS AKIAIOSFODNN7EXAMPLE:
MyyxeRY7whkBe+bq8fHCL/2kKUg=



AWS SDKs for:
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■ Java*

■ PHP

■ Ruby

■ Node.js

■ Python

■ .NET

■ Android

■ iOS

*ColdFusion



AWS Account Security



Master AWS Account

3
AWS Account Security

IAM Account Key Pair

Access Key
Secret Key

Key Pair ID
Public Key
Private Key 



IAM accounts can create other IAM accounts

Master AWS account can create key pairs
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S3: IAM accounts

CloudFront: Key pairs
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Master AWS Account

3
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Groups ACL

Authenticated Users
All Users

Log Delivery
Policies



Sample Policy
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{
  "Version":"2008-10-17",
  "Statement":[{
 "Sid":"AddPerm",
      "Effect":"Allow",
     "Principal": {
            "AWS": "*"
         },
      "Action":["s3:GetObject"],
      "Resource":["arn:aws:s3:::bucket/*"
      ]
    }
  ]
}



Requests from a Speci!c Domain Policy

3
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{
  "Version":"2008-10-17",
  "Id":"http referer policy example",
  "Statement":[
    {
      "Sid":"Allow get requests referred by www.mysite.com 
and mysite.com",
      "Effect":"Allow",
      "Principal":"*",
      "Action":"s3:GetObject",
      "Resource":"arn:aws:s3:::example-bucket/*",
      "Condition":{
        "StringLike":{
          "aws:Referer":[
            "http://www.mysite.com/*",
            "http://mysite.com/*"
          ]
        }
      }
    }
  ]
}



Working with S3
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Bucket

my!les.s3.amazonaws.com
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Bucket

Object
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Working with S3

Everything is an object
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Objects have metadata



Everything in S3 is 
private by default.
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http://mybucket.s3.amazonaws.com/
path/to/file.png
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Sample .NET Request

BasicAWSCredentials basicCredentials = new 
BasicAWSCredentials("*** Access Key ID ***", "*** 
Security Access Key ***");

AmazonS3Client s3Client = new 
AmazonS3Client(basicCredentials);
           
var response = s3Client.ListBuckets();
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Sample Java Request

AWSCredentials myCredentials = new 
BasicAWSCredentials(myAccessKeyID, mySecretKey);

AmazonS3 s3client = new 
AmazonS3Client(myCredentials);        

List <Buckets> = s3client.listBuckets();
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C:/ 

s3:// 



4
Working with S3

Basic ColdFusion Integration

<cffile action=“read”
file=“s3://somebucket/somefile.txt” 
variable=“fileData” />

<cffile action=“write”
file=“s3://somebucket/somefile.txt”
output=“#someStuff#” />
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Basic ColdFusion Integration

<cffile action=“delete”
file=“s3://somebucket/somefile.txt” />

<cffile action=“copy”
source=“s3://somebucket/somefile.txt”
destination=“s3://anotherbucket/
someCopy.txt” />
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Basic ColdFusion Integration

<cfdirectory action=“create”
directory=“s3://somebucket/
someDirectory” />

<cfdirectory action=“list”
directory=“s3://somebucket/
someDirectory” />
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ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
    <cfset perms = [
        {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
    ]>
    <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt", 
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>
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Tags Which Support S3

■ cffile*

■ cfdirectory

■ cfdocument

■ cfftp

■ cffeed

■ c!mage

■ c$oop†

*Except rename
† Looping over directory information
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Functions Which Support S3
■ !leOpen

■ !leClose

■ !leCopy

■ !leDelete

■ !leExists

■ !leisEOF

■ !leMove

■ !leWrite

■ !leRead

■ !leReadBinary

■ !leReadLine

■ !leSetLastModi!ed

■ getFileInfo

■ getDirectoryFromPath

■ directoryCreate

■ directoryDelete

■ directoryExists

■ directoryList

■ imageNew

■ imageRead

■ imageWrite

■ imageWriteBase64

■ isImageFile

■ isPDFFile
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Don’t you need credentials?
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Setting AWS IAM credentials

1. In the individual S3 call

2. In application.cfc
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Setting AWS IAM credentials

<cffile action=“read”
file=“s3://
accessKeyId:awsSecretKey@somebucket/
somefile.txt” variable=“fileData” />
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Setting AWS IAM credentials

In application.cfc:

this.s3.accessKeyId="accessKey"; 
this.s3.awsSecretKey="secretKey"; 
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ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
    <cfset perms = [
        {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
    ]>
    <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt", 
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>



Everything in S3 is 
private by default.

4
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ColdFusion Example
<cfif not directoryExists("s3://somebucket.s3.amazonaws.com")>
    <cfset perms = [
        {group="all", permission="read"},
{id="canonicalIDofYourAWSAccount", permission="full_control"}
    ]>
    <cfdirectory action="create" directory="s3://
somebucket.s3.amazonaws.com" storeacl="#perms#">
</cfif>

<cfset fileWrite("s3://somebucket.s3.amazonaws.com/myFile.txt", 
"#someOutput#")>

<cfset files = directoryList("s3://somebucket.s3.amazonaws.com")>
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Get ACL with storeGetACL()

Set ACL with storeSetACL()



4
Working with S3

Setting permissions with ACLs

<cfset permissions = storeGetACL(fileOnS3) />
<cfset arrayAppend(permissions,
{group="all",permission="read"}) />
<cfset storeSetACL(fileOnS3, "#permissions#") />
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Get object metadata with 
storeGetMetadata()

Set object metadata with 
storeSetMetadata()
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<cfset metadataStruct.content_type=
"video/webm" />
<cfset storeSetMetadata(s3File, 
"#metadataStruct#") />

Setting content type
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Standard Keys in S3 Metadata

■ last_modi!ed

■ date

■ owner

■ etag

■ content_length

■ content_type

■ content_encoding

■ content_disposition

■ content_language

■ content_md5

■ md5_hash
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Multiparting Large Uploads

this.s3.minsizeformultipart=10;

*CF10–only

Files above this size (in MB) will 
be split and sent in parallel.
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ACF 9.0.1/2 bug

Solution: Get your current ACL, 
make the metadata change, then set the ACL again
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S3: The Next Level
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Custom Signing Requests
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Custom Signing Requests

Signature = Base64( 
HMAC-SHA1( YourSecretAccessKeyID, UTF-8-Encoding-
Of( StringToSign ) ) 
);

StringToSign = HTTP-Verb + "\n" +
 Content-MD5 + "\n" +
 Content-Type + "\n" +
 Date + "\n" +
 CanonicalizedAmzHeaders +
 CanonicalizedResource;
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Expiring the URL
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Expiring the URL

1. Specify the object URL

2. Specify an expiration time for the request

3. Sign the request with your IAM secret key 
using HMAC encoding

4. Make the HTTP call

http://bucket.s3.amazonaws.com/someObject?
AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=117736
3698&Signature=vjSAMPLENmGa%2ByT272YEAiv4%3D
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Changing !le properties 
on a per-request basis

■ File name

■ Content–disposition

■ MIME–type

■ Adding custom metadata
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Changing !le properties per request

1. Specify the object URL

2. Specify your request headers

3. Sign the request with your IAM secret key 
using HMAC encoding

4. Make the HTTP call
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S3RequestSigningUtils on GitHub

github.com/brianklaas/ctlS3Utils

*Requires CF10
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Direct Upload to S3
from the Browser

www.bennadel.com/blog/2500-Uploading-Files-To-Amazon-S3-
Using-A-Form-Post-And-ColdFusion.htm
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Upload to S3 from the Browser

■ Can upload only one !le at a time.

■ Must specify the policy for the upload.

■ You still need to generate an authorization signature on 
the server and embed that as a form parameter.

■ Provide a success URL in the form. AWS posts the bucket 
and key to that URL on successful upload.

■ Failures are returned as the typical AWS error XML 
structure.
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S3: Issues to Consider
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What happens 
when an upload fails?
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S3 is storage, not a !le system

Can get basic !le info with
<cfhttp url="http://bucket.s3.amazonaws.com/!lename" method="head">
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What happens 
when AWS goes down?



Working with 
CloudFront



Working with CloudFront

AWS

IAM

S3

CloudFront

5



CloudFront Work$ow
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1. Put !les in your origin (S3).

2. Make the objects accessible.

3. Create a CloudFront distribution pointing at 
your origin.

4. Use URLs with the CloudFront distribution 
domain.



http://d1xrz3abcdef8.cloudfront.net/image.jpg
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If S3 is the origin for your CloudFront 
distribution, the bucket name is embedded 

in the CloudFront distribution domain name.

Use the full path to the !le here, 
including folder name(s).



Custom domain names
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Default TTL = 24 hours

5
Working with CloudFront



5
Working with CloudFront

CloudFront: The Next Level



Changing the TTL
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Versioning
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?ver=2



Custom HTTP headers
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?response-content-disposition=attachment;
!lename=someNewFileName.mp4



Protecting For–Fee Content
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CloudFront distributions which 
allow signed requests have 

additional setup parameters.
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(See the docs.)



Signing the Request
5

Working with CloudFront

1. Specify the object URL
2. Specify an expiration time for the request
3. Sign the request with the CloudFront private key 

from a trusted signer using HMAC encoding
4. Make the HTTP call

https://d1y9l76vzamjxr.cloudfront.net/sample.pdf?ver=2&
response-content-disposition=attachment%3Bfilename
%3DtotalExample.mp4
&Expires=1384467600
&Signature=DAQ5Eoy-
cKV0pqqaOxh199mHofuYEud3q4MzCHH4IKJqn25P8NJG1RbWPzkw0Dlp~PaUUl09Enq
O7BEvKnjcx-pivmDkpZ9N9-
wq44Ez09q088LaTuP31aXMSoS1~AMyR1zsvTuwkrmwrIucXPiOYiiQaidtgyFdtSRiV
uJaLaY_
&Key-Pair-Id=APKAIZXDNAH35HHVJAZQ



CloudFront Private Key?
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Master AWS Account

3
AWS Account Security

IAM Account Key Pair

Access Key
Secret Key

Key Pair ID
Public Key
Private Key 



Trusted Signer?
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S3: Origin Access Identity

5
Working with CloudFront



   CloudFront key pair
+ Trusted signer
+ Origin Access Identity
= Signed CloudFront URLs

5
Working with CloudFront



Use a library for this.
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(Seriously.)



CloudFront Libraries
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■ .NET — ThreeSharp 

■ Java — JetS3t

■ PHP — AWS Samples

■ Ruby — RightScale gem

+ regular AWS SDKs
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CTL CloudFrontUtils on GitHub

github.com/brianklaas/ctlCloudFrontUtils

*Requires AWS SDK and CF10
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CTL CloudFrontUtils on GitHub

<cfset cfUtilsObj = new ctlCloudFrontUtils(initArgs) />

<cfset argCol = structNew() />
<cfset argCol.originFilePath = "sample.pdf" />
<cfset argCol.expiresOnDate = DateAdd("n", 1, Now()) />
<cfset argCol.objectVersion = 3 />
<cfset argCol.isAttachment = true />
<cfset argCol.fileNameToUse = "lecture1a.pdf" />

<cfset signedURL = 
cfUtilsObj.createSignedURL(argumentCollection = 
argCol) />
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The Full Rundown on Setting Up 
a CloudFront Distribution for 

Signed URLs and Using the CTL 
CloudFront Utils

www.iterateme.com/blog/index.cfm/2013/2/11/Creating-Signed-
URLs-for-Amazon-CloudFront-in-ColdFusion
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CloudFront: Issues to Consider



Everything fails.
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Multiple distributions, balanced.
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*Requires external load balancing.



Use a custom domain name.
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S3 as a CDN vs. CloudFront
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Go Do



Session Evaluation

ncdevcon.com/sessions/



Thank you!

Brian Klaas
Johns Hopkins Bloomberg School of Public Health
bklaas@jhsph.edu
@brian_klaas
www.iterateme.com
github.com/brianklaas



■ AWS Management Console
http://aws.amazon.com/console/

■ AWS Documentation
http://aws.amazon.com/documentation/

■ AWS SDK’s
http://aws.amazon.com/tools/

■ ColdFusion ACL Object Information
http://help.adobe.com/en_US/ColdFusion/9.0/Developing/
WSd160b5fdf5100e8f79a619d71281e7d6c97-8000.html

■ Adobe CF 9.0.1/2 storeSetMetadata() Bug
http://www.raymondcamden.com/index.cfm/2011/2/7/ColdFusion-S3-
Implementation-bug-with-metadata-and-ACLs

Resources Used in Building this Presentation



■ Direct Upload to S3 Using Fine Uploader
http://blog.!neuploader.com/2013/08/16/!ne-uploader-s3-upload-
directly-to-amazon-s3-from-your-browser/

■ Ben Nadel’s Example of Direct Upload to S3 Using Plupload
http://www.bennadel.com/blog/2502-Uploading-Files-To-Amazon-S3-
Using-Plupload-And-ColdFusion.htm

■ Creating a CloudFront Download Distribution
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
CreatingDownloadDistributions.html

■ Setting up a CloudFront Distribution for Signed URLs
http://www.iterateme.com/blog/index.cfm/2013/2/11/Creating-Signed-
URLs-for-Amazon-CloudFront-in-ColdFusion

Resources Used in Building this Presentation



■ CloudFront Libraries
http://aws.amazon.com/code/CloudFront

■ ColdFusion 10 Documentation on Using S3
https://learn.adobe.com/wiki/display/coldfusionen/Optimizing
+ColdFusion+applications

Resources Used in Building this Presentation


