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Nothing’s faster  
than work you don’t have to wait for.

Workflows
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We’ve got to wait around for some ill-
defined future point.

Request/Response



runAsync( ) in ColdFusion 2018+

Request/Response



runAsync(validateRequest) 
        .then(checkInventory) 
        .then(processPayment) 
        .then(findClosestWarehouse) 
        .then(createPickTicket) 
        .then(calculateShipDate); 
        .then(sendEmailConfirmation);

Request/Response



var clientView = runAsync(validateRequest) 
        .then(processPayment) 
        .then(sendEmailConfirmation); 

var warehouseProcess = runAsync(findClosestWarehouse) 
        .then(checkInventory) 
        .then(createPickTicket) 
        .then(calculateShipDate); 
        .then(sendShipmentDateEmail);       

Request/Response



Error handling 
Retries 
Throttling 
New business requirements

Request/Response



Linear, linked flow encourages  
brittle architectures

Request/Response



Linear, linked flow blocks  
your ability to scale

Request/Response



How can we do better?

Request/Response



Event-driven



Something happens. 
Code responds.

Event-driven



Database triggers

Event-driven

SQL



Event–driven = automatic plumbing

Event-driven



Event-driven = easy fan-out

Event-driven



How do you know it’s done?

Event-driven

?



Orchestration tools

Event-driven



Orchestration = additional complexity 

Event-driven

!



Something simpler?

Event-driven



Pub/Sub +  
Queues



SNS = Simple Notification Service

Pub/Sub + Queues



SNS = Pub/Sub

Pub/Sub + Queues



SNS = One Publisher,  
Many Subscribers

Pub/Sub + Queues



SNS Subscribers: 

https endpoints (including CFML) 

Email 

Phone number (SMS) 

SQS queue 

Lambda 

Kinesis Firehose 

Pinpoint application

Pub/Sub + Queues



SNS subscribers can: 

Filter on specific criteria 

Retry on delivery to https endpoints 

Specify DLQ on completely failed delivery 

Pub/Sub + Queues



snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"}); 

topic = snsService.createTopic(topicName); 

msgBody = {“customer”: 123, “orderID”: 456, “amount”: “78.90”}; 

topic.publish(msgBody);

Pub/Sub + Queues

github.com/brianklaas/awsplaybox



SNS = Fan-out

Pub/Sub + Queues



SQS = Simple Queue Service

Pub/Sub + Queues



SQS = Stack of messages

Pub/Sub + Queues



SQS = One publisher,  
one worker 

Pub/Sub + Queues



Pub/Sub + Queues

CFML

(ack)



Pub/Sub + Queues

CFML

CFML

CFML



SQS queues can: 

Perform content-based deduplication 

Retry messages on failed processing 

Specify DLQ on completely failed processing  

Pub/Sub + Queues



SQS != ordered processing

Pub/Sub + Queues



SQS != only-once delivery

Pub/Sub + Queues



SQS reqiures idempotency

Pub/Sub + Queues



FIFO queues for order

Pub/Sub + Queues



sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”}); 

msgBody = {“customer” : 123, “orderID” : 456, “amount” : “78.90”}; 

message = {“messageBody” : msgBody}; 

myQueue.sendMessage(message); 

Pub/Sub + Queues

github.com/brianklaas/awsplaybox



sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”}); 

urlOfQueue = sqsService.GetQueueUrl(nameOfQueue); 

messageInfo = sqsService.receiveMessage(urlOfQueue); 

receiptHandle = messageInfo.messages[1].receiptHandle; 

// do work 

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Pub/Sub + Queues
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Message Size Limit: 

SNS = 256 KiB 
SQS = 256 KiB

vs



Message Persistence: 

SNS = No 
SQS = Yes

vs



Message Ordering: 

SNS = Yes 
SQS = Yes, when using FIFO queues

vs



Message Filtering: 

SNS = Yes 
SQS = Just added!

vs



Common Pattern: SNS in front of SQS

vs



Use cases: 

SNS = Fan-out to multiple recipients 
SQS = Queuing up work by processors

vs



SNS + SQS allows you to scale and 
parallelize work safely and durably.

vs
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sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”}); 

urlOfQueue = sqsService.GetQueueUrl(nameOfQueue); 

messageInfo = sqsService.receiveMessage(urlOfQueue); 

receiptHandle = messageInfo.messages[1].receiptHandle; 

// Build and send the custom email 

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Example



Example



Example

( numRequests * avg execution time )

seconds for scheduled task



var remainingTime = 55000; 

do { 

     var messageProcessStartTime = getTickCount(); 

    // get SQS message, generate and send email, delete message 

   var messageProcessEndTime = getTickCount(); 

   remainingTime -= (messageProcessEndTime - messageProcessStartTime); 

} while (remainingTime gt 0);

Example



Example

Processing–intensive tasks 

Throttle processing of a batch of items



Real-World Example 2
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snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"}); 

topic = snsService.createTopic(topicName); 

msgBody = {“customer”: 123, “orderID”: 456, “amount”: “78.90”}; 

topic.publish(msgBody);

Example

github.com/brianklaas/awsplaybox
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Kinesis Data Firehose: 

Can ingest up to 500,000 records/second 

Stores records for up to 7 days 

Manages writing to the destination 

Can be queried in real-time with Kinesis Data Analytics 

Example



Example



Example



Amazon Athena: 

Query files in S3 with SQL 

Store in JSON, CSV, or Parquet formats 

Ad-hoc or repeated queries 

Pay based on amount of data scanned 

Example



Example
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So how much does this cost? 

Example

40 million requests = $30/month



Example



Example



Safe experimentation!

Example



Go Do!
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