Scalable, Responsive
Apps and Services with

Queues and Pub/Sub
Mechanisms

O->

Worktlows ()
[<O

O
Workflows !

OO

Find Closest Create Pick Calculate
Warehouse Ticket Ship Date

Check

Inventory

O

Workflows !

OO

o=
Workflows !

OO

Nothing’s taster

than work you don't have to wait for.

Scalable, Responsive
Apps and Services with

Queues and Pub/Sub
Mechanisms

Request/Response @

We've got to wait around for some ill-

defined future point.

runAsync() in ColdFusion 2018+

runAsync(validateRequest)
then(checklnventory)
then(processPayment)
then(findClosestWarehouse)

then(calculateShipDate);

(

(
then(createPickTicket)

(
then(sendEmailConfirmation):

var clientView = runAsync(validateRequest)
then(processPayment)
then(sendEmailContirmation);

var warehouseProcess = runAsync(findClosestWarehouse)
then(checklnventory)
then(createPickTicket)
then(calculateShipDate);
then(sendShipmentDateEmail);

Error handling
Retries

Throttling
New business requirements

Linear, linked flow encourages

brittle architectures

Linear, linked flow blocks

your ability to scale

How can we do better?

9
Event-driven I{'
9

Something happens.

Code responas.

Database triggers

Event—driven = automatic plumbing Qﬂ

Fvent-driven = easy fan-out

How do you know it's done? o

Orchestration tools

Orchestration = additional complexity

Something simpler?

Queues

Y
Pub/Sub + @
N

SNS = Simple Notification Service W—E

SNS = Pub/Sub @

SNS = One Publisher,
Many Subscribers v

SNS Subscribers:

https endpoints (including CFML)
Email

Phone number (SMS)

SQS queue

Lambda

Kinesis Firehose

Pinpoint application

Pub/Sub + Queues @ O@*o

SNS subscribers can:

Filter on specific criteria
Retry on delivery to https endpoints
Specity DLQ on completely tailed delivery

Pub/Sub + Queues @ O@*o

snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"});

topic = snsService.create Topic(topicName);

msgBody = {"customer”: 123, “orderlD": 456, “amount”: “78.90"};

topic.publish(msgBody);

Pub/Sub + Queues @ o@«o

SNS = Fan-out

()
SQS = Stack of messages O+ >0
__/

one worker

SQS = One publisher, O@O
N4

D

Pub/Sub + Queues @ o@o

D

Pub/Sub + Queues @ o@o

SQS queues can:

Retry messages on failed processing

Perform content-based deduplication O_)m.)o

Specity DLQ on completely tailed processing

Pub/Sub + Queues @ o@o

4O\
SQS != ordered processing O+ >0
—

|)\
SQS = only-once adelivery O*H-)O
_

SQS regiures idempotency O+ >0
_

N\
FIFO queues for order O+ >0
_

sqgsService= getCloudService(awsCredentials, {"serviceName" : “SQS"});

msgBody = {"customer” : 123, “orderID"” : 456, “amount” : "78.90"};

message = {"messageBody"” : msgBody};

myQueue.sendMessage(message);

Pub/Sub + Queues @ 0@0

sgsService= getCloudService(awsCredentials, {"serviceName" : “SQS"});
urlOfQueue = sgsService.GetQueueUrl(nameOfQueue);

messagelnfo = sgsService.receiveMessage(urlOtQueue);

receiptHandle = messagelnfo.messages[1].receiptHandle;

// do work

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Pub/Sub + Queues @ 0@0

Message Size Limit:

SNS = 256 KiB

SQS = 256 KiB

Message Persistence:

SNS = No

SQS = Yes

Message Ordering:

SNS = Yes

SQS = Yes, when using FIFO queues

Message Filtering:

SNS = Yes

SQS = Just added!

Common Pattern: SNS in front of SQS

Use cases:

SNS = Fan-out to multiple recipients

SQS = Queuing up work by processors

SNS + SQS allows you to scale and

parallelize work sately and durably.

Real-World Example 1 !E@}

Example @@

sgsService= getCloudService(awsCredentials, {"serviceName" : “SQS"});
urlOfQueue = sgsService.GetQueueUrl(nameOfQueue);

messagelnfo = sgsService.receiveMessage(urlOtfQueue);

receiptHandle = messagelnfo.messages[1].receiptHandle;

// Build and send the custom email

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Example @@

(numRequests * avg execution time)

seconds for scheduled task

var remainingTime = 55000;
do {
var messageProcessStartTime = getTickCount();

// get SQS message, generate and send email, delete message

var messageProcessEndTime = getTickCount();

remainingTime -= (messageProcessEndTime - messageProcessStartTime);

} while (remainingTime gt 0);

I~ I«
= 02 >0 O») (>0 | =P
e e

Processing—intensive tasks

Throttle processing of a batch of items

Real-World Example 2 !E@}

N

.

snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"});

topic = snsService.create Topic(topicName);

msgBody = {"customer”: 123, “orderlD": 456, “amount”: “78.90"};

topic.publish(msgBody);

Kinesis Data Firehose:

Can ingest up to 500,000 records/second
Stores records for up to 7 days
Manages writing to the destination

Can be queried in real-time with Kinesis Data Analytics

Amazon Athena:

Query files in S3 with SQL
Store in JSON, CSV, or Parquet formats

Ad-hoc or repeated queries

Pay based on amount of data scanned

So how much does this cost?

40 million requests = $30/month

Safe experimentation!

Brian Klaas

@brian klaas

Blog: brianklaas.net
github.com/brianklaas/awsplaybox

