
Scalable, Responsive
Apps and Services with
Queues and Pub/Sub
Mechanisms

CF SUMMIT 2021

BRIAN KLAAS

Workflows

Workflows

Workflows

Click Button
Validate
Request

Check
Inventory

Process
Payment

Find Closest
Warehouse

Create Pick
Ticket

Calculate
Ship Date

Send
Confirmation

Email

Success
View

Workflows

Click Button
Success

View

Nothing’s faster
than work you don’t have to wait for.

Workflows

Scalable, Responsive
Apps and Services with
Queues and Pub/Sub
Mechanisms

CF SUMMIT 2021

BRIAN KLAAS

Request/Response

Request/Response

We’ve got to wait around for some ill-
defined future point.

Request/Response

runAsync() in ColdFusion 2018+

Request/Response

runAsync(validateRequest)
 .then(checkInventory)
 .then(processPayment)
 .then(findClosestWarehouse)
 .then(createPickTicket)
 .then(calculateShipDate);
 .then(sendEmailConfirmation);

Request/Response

var clientView = runAsync(validateRequest)
 .then(processPayment)
 .then(sendEmailConfirmation);

var warehouseProcess = runAsync(findClosestWarehouse)
 .then(checkInventory)
 .then(createPickTicket)
 .then(calculateShipDate);
 .then(sendShipmentDateEmail);

Request/Response

Error handling
Retries
Throttling
New business requirements

Request/Response

Linear, linked flow encourages
brittle architectures

Request/Response

Linear, linked flow blocks
your ability to scale

Request/Response

How can we do better?

Request/Response

Event-driven

Something happens.
Code responds.

Event-driven

Database triggers

Event-driven

SQL

Event–driven = automatic plumbing

Event-driven

Event-driven = easy fan-out

Event-driven

How do you know it’s done?

Event-driven

?

Orchestration tools

Event-driven

Orchestration = additional complexity

Event-driven

!

Something simpler?

Event-driven

Pub/Sub +
Queues

SNS = Simple Notification Service

Pub/Sub + Queues

SNS = Pub/Sub

Pub/Sub + Queues

SNS = One Publisher,
Many Subscribers

Pub/Sub + Queues

SNS Subscribers:

https endpoints (including CFML)

Email

Phone number (SMS)

SQS queue

Lambda

Kinesis Firehose

Pinpoint application

Pub/Sub + Queues

SNS subscribers can:

Filter on specific criteria

Retry on delivery to https endpoints

Specify DLQ on completely failed delivery

Pub/Sub + Queues

snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"});

topic = snsService.createTopic(topicName);

msgBody = {“customer”: 123, “orderID”: 456, “amount”: “78.90”};

topic.publish(msgBody);

Pub/Sub + Queues

github.com/brianklaas/awsplaybox

SNS = Fan-out

Pub/Sub + Queues

SQS = Simple Queue Service

Pub/Sub + Queues

SQS = Stack of messages

Pub/Sub + Queues

SQS = One publisher,
one worker

Pub/Sub + Queues

Pub/Sub + Queues

CFML

(ack)

Pub/Sub + Queues

CFML

CFML

CFML

SQS queues can:

Perform content-based deduplication

Retry messages on failed processing

Specify DLQ on completely failed processing

Pub/Sub + Queues

SQS != ordered processing

Pub/Sub + Queues

SQS != only-once delivery

Pub/Sub + Queues

SQS reqiures idempotency

Pub/Sub + Queues

FIFO queues for order

Pub/Sub + Queues

sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”});

msgBody = {“customer” : 123, “orderID” : 456, “amount” : “78.90”};

message = {“messageBody” : msgBody};

myQueue.sendMessage(message);

Pub/Sub + Queues

github.com/brianklaas/awsplaybox

sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”});

urlOfQueue = sqsService.GetQueueUrl(nameOfQueue);

messageInfo = sqsService.receiveMessage(urlOfQueue);

receiptHandle = messageInfo.messages[1].receiptHandle;

// do work

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Pub/Sub + Queues

vs

Message Size Limit:

SNS = 256 KiB
SQS = 256 KiB

vs

Message Persistence:

SNS = No
SQS = Yes

vs

Message Ordering:

SNS = Yes
SQS = Yes, when using FIFO queues

vs

Message Filtering:

SNS = Yes
SQS = Just added!

vs

Common Pattern: SNS in front of SQS

vs

Use cases:

SNS = Fan-out to multiple recipients
SQS = Queuing up work by processors

vs

SNS + SQS allows you to scale and
parallelize work safely and durably.

vs

Real-World Example 1

Example

Example

Example

Example

Example

Example

sqsService= getCloudService(awsCredentials, {"serviceName" : “SQS”});

urlOfQueue = sqsService.GetQueueUrl(nameOfQueue);

messageInfo = sqsService.receiveMessage(urlOfQueue);

receiptHandle = messageInfo.messages[1].receiptHandle;

// Build and send the custom email

sqsService.deleteMessage(urlOfQueue,receiptHandle);

Example

Example

Example

(numRequests * avg execution time)

seconds for scheduled task

var remainingTime = 55000;

do {

 var messageProcessStartTime = getTickCount();

 // get SQS message, generate and send email, delete message

 var messageProcessEndTime = getTickCount();

 remainingTime -= (messageProcessEndTime - messageProcessStartTime);

} while (remainingTime gt 0);

Example

Example

Processing–intensive tasks

Throttle processing of a batch of items

Real-World Example 2

Example

Example

Example

Example

snsService= getCloudService(awsCredentials, {"serviceName" : “SNS"});

topic = snsService.createTopic(topicName);

msgBody = {“customer”: 123, “orderID”: 456, “amount”: “78.90”};

topic.publish(msgBody);

Example

github.com/brianklaas/awsplaybox

Example

Example

Example

Example

Kinesis Data Firehose:

Can ingest up to 500,000 records/second

Stores records for up to 7 days

Manages writing to the destination

Can be queried in real-time with Kinesis Data Analytics

Example

Example

Example

Amazon Athena:

Query files in S3 with SQL

Store in JSON, CSV, or Parquet formats

Ad-hoc or repeated queries

Pay based on amount of data scanned

Example

Example

Example

Example

Example

Example

So how much does this cost?

Example

40 million requests = $30/month

Example

Example

Safe experimentation!

Example

Go Do!

Brian Klaas
@brian_klaas
Blog: brianklaas.net
github.com/brianklaas/awsplaybox

