
I DIDN’T KNOW S3
COULD DO THAT!
Brian Klaas
brian.klaas@gmail.com
@brian_klaas

ColdFusion Developer Week 2022

S3 POWERS THE
WEB

Why this talk?

60 TERRABITS
PER SECOND

Why this talk?

Why this talk?

CF/FILE INTEGRATION

<cffile action=“read” file=“s3://accessKey:secretKey@somebucket/somefile.txt”
variable=“fileData” />

fileWrite(“s3://somebucket/somefile.txt”, textOfFile);

imageAsBinary = fileReadBinary(“s3://userfilestorage/userImage.jpg");

Why this talk?

THERE IS

SO
MUCH
MORE

Why this talk?

AWS JAVA SDK

Add to:

cfusion/lib

lucee-server/context/lib/

Why this talk?

AWS
PLAYBOX
APP

github.com/brianklaas/awsPlaybox

Why this talk?

COLDFUSION 2021

Native support for S3 and Azure Blob Services

No need to add the AWS Java SDK

Four Things

LET’S TALK ABOUT

SECURITY MONEY POWER …AND BEYOND

CONFIGURING THE
AWS SERVICE
IN COLDFUSION 2021

A First, Important Thing

Configuring the AWS Service

INSTALL THE AWSS3 PACKAGE

CF Administrator

cfpm.bat in CFHOME/cfusion/bin

CommandBox: cfpm once the server is started

Configuring the AWS Service

THREE WAYS TO
CONFIGURE THE AWS SERVICE

CF Administrator

application.cfc

Inline

Configuring the AWS Service

CONFIGURE IN
APPLICATION.CFC

void function onApplicationStart(){

 application.awsCredentials = {

 "vendorName" : "AWS",

 "region" : "us-east-1",

 "accessKeyId" : "my access key",

 "secretAccessKey" : "my secret key"

 } ;

 application.s3Configuration = {

 "serviceName" : "S3"

 } ;

 application.s3ServiceObject =
 getCloudService(application.awsCredentials,
 application.s3Configurtation);

}

Working with the AWS Service

BASIC PATTERN TO WORKING WITH
S3 IN CF2021

Get a reference to the bucket

Create a struct of options

Call a method of the bucket object using the options struct

Working with the AWS Service

EXAMPLE:
UPLOADING
A FILE

myBucket = application.s3ServiceObject.bucket(“your
bucket name”);

uploadRequest = {

 “srcFile”: “path/to/local/file.txt”,

 “key”: “fileName.txt”

};

uploadResponse = myBucket.uploadFile(uploadRequest);

Four Things

SECURITY

IDENTITY ACCESS
MANAGEMENT
(IAM)

Security

Security

ADOBE
COLDFUSION
2018

Security

YOUR OWN
POLICY

Security

MY IAM TALK
FROM
CFSUMMIT
2019

youtube.com/watch?v=ucn90XLDlPw

TIME–EXPIRING URLS

Security

NO MORE PUBLIC
READ BUCKETS!

Security

TIME–EXPIRING URLS

NO MORE PUBLIC
READ BUCKETS!

Security

TIME–EXPIRING URLS

Security

TIME–EXPIRING URLS

Secure your content

Limit access to downloads

Change file names on the fly

Specify inline or attachment disposition

Presigned PUT: Upload files directly to S3, bypassing CF

Security

EXAMPLE:
PRESIGNED GET

myBucket = application.s3ServiceObject.bucket(“your
bucket name”);

presignedGETRequest = {

 “duration”: “2h”,

 “key”: “fileName.txt”

};

awsResponse =
myBucket.generateGetPresignedUrl(presignedGETRequest);

signedURL = awsResponse.url;

Security

S3 SIGNING
COMPONENT

TIME–EXPIRING URLS
IN CF2018 AND EARLIER

github.com/brianklaas/ctlS3Utils

signingUtils = CreateObject("component",
“s3RequestSigningUtils").init(accessKey, secretKey);

signedURL = signingUtils
.createSignedURL(s3BucketName, pathToFileInBucket);

ENCRYPTING
OBJECTS AT REST

Security

Security

ENCRYPTING OBJECTS AT REST

Server-Side Encryption with Amazon S3-Managed Keys (SSE-S3)

Server-Side Encryption with Customer Master Keys (CMKs) Stored in AWS
Key Management Service (SSE-KMS)

Server-Side Encryption with Customer-Provided Keys (SSE-C)

Security

EXAMPLE:
ENCRYPT OBJECTS
AT REST

myBucket = application.s3ServiceObject.bucket(“your
bucket name”);

uploadRequest = {

 “srcFile”: “path/to/local/file.txt”,

 “key”: “fileName.txt”,

 “serverSideEncryption”:
“AES_256_SERVER_SIDE_ENCRYPTION”

};

uploadResponse = myBucket.uploadFile(uploadRequest);

Security

ENCRYPTING OBJECTS AT REST: CF2018 VERSION

fileContent = fileReadBinary(getTempDirectory() & uploadedFile.serverFile);

objectMetadata = CreateObject('java', 'com.amazonaws.services.s3.model.ObjectMetadata').init();
objectMetadata.setContentLength(ArrayLen(fileContent));
objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_SIDE_ENCRYPTION);

// Storing a file with Server-Side Encryption requires a byte stream, not a standard Java file object
fileInputStream = CreateObject('java', 'java.io.ByteArrayInputStream').init(fileContent);

putFileRequest = CreateObject('java', ‘com.amazonaws.services.s3.model.PutObjectRequest')
 .init(s3BucketName, fileName, fileInputStream, objectMetadata);

s3.putObject(putFileRequest);

OBJECT LOCK

Security

Security

OBJECT LOCK

Don’t allow files to be deleted

Retention period = only for a period of time

Legal Hold = forever (or until hold is removed)

Enabled at the bucket level, overridden on a per-file basis

Security

EXAMPLE:
CONFIGURING
OBJECT LOCK
ON A FILE

myBucket = application.s3ServiceObject.bucket(“your bucket
name”);

objectLockRequest = {

 “key”: “fileName.txt”,

 “objectLockConfiguration”: {

 “objectLockEnabled”: “ENABLED”,

 “defaultRetention”: {

 “mode”: “COMPLIANCE”,

 “days”: 30

 }

 }

};

awsResponse =
myBucket.putObjectLockConfiguration(objectLockRequest);

Four Things

MONEY

STORAGE CLASSES

Money

Money

STORAGE CLASSES

S3 Standard

S3 Intelligent-Tiering

S3 Standard-Infrequent Access (S3 Standard-IA)

S3 One Zone-Infrequent Access (S3 One Zone-IA)

Amazon S3 Glacier Instant Retrieval

Amazon S3 Glacier Flexible Retrieval

Amazon S3 Glacier Deep Archive

Money

STORAGE CLASSES

A DIGRESSION
INTO DURABILITY

Money

STORAGE CLASSES: DURABILITY

11 9's of durability in distributed storage

You're 400 times more likely to get hit by a meteor than lose one of a million objects in S3

Formal proof-of-correctness algorithms

Checksums (including bitslips in RAM)

Actuarial models that anticipate when drives will fail

Automated “durability auditors”

youtube.com/watch?v=nLyppihvhpQ

Security

EXAMPLE: SET
STORAGE CLASS

myBucket = application.s3ServiceObject.bucket(“your
bucket name”);

uploadRequest = {

 “srcFile”: “path/to/local/file.txt”,

 “key”: “fileName.txt”,

 “storageClass”: “STANDARD_IA”

};

uploadResponse = myBucket.uploadFile(uploadRequest);

Money

STORAGE CLASSES

A DIGRESSION
INTO COST

Money

STORAGE CLASSES: COST

S3 Standard Storage

First 50TB/month $0.023 per GB

S3 Intelligent - Tiering

Frequent Access Tier, First 50 TB / Month $0.023 per GB

Infrequent Access Tier, All Storage / Month $0.0125 per GB

Monitoring and Automation, All Storage / Month $0.0025 per 1,000 objects

S3 Standard - Infrequent Access

All Storage / Month $0.0125 per GB

S3 One Zone - Infrequent Access

All Storage / Month $0.01 per GB

S3 Glacier Flexible

All Storage / Month $0.0036 per GB

S3 Glacier Deep Archive

All Storage / Month $0.00099 per GB

Money

STORAGE CLASSES: COST

BEWARE EGRESS

Money

STORAGE CLASSES: COST

CONSIDER CLOUDFRONT

4.6TB + CloudFront = $406

4.6TB via S3 alone = $414

LIFECYCLE FLOWS
(Automatic Archiving)

Money

Money

LIFECYCLE FLOWS

DON’T PAY FOR FILES
YOU DON’T NEED

Money

LIFECYCLE FLOWS

Transition Actions:

 “After 90 days, move all files to infrequent access storage.”

Expiration Actions:

 “After 180 days, delete the file.”

Money

LIFECYCLE FLOWS

Pro Tips:

Lifecycle rule to move files to 1ZIA after 30 days

Minimum of 30 days in standard storage required

128KB minimum file size still enforced for IA storage classes

You can only have one “all files” predicate per bucket

Filter by object key (path) prefix, or tags

Four Things

POWER

VERSIONING

Power

Power

VERSIONING

Whole bucket only

On object upload, S3 returns the version ID in the version-id property of the
response object

You are responsible for keeping track of what versions mean

Security

EXAMPLE: GET
VERSIONS OF AN
OBJECT

myBucket = application.s3ServiceObject.bucket(“your
bucket name”);

versionsRequest = {

 “prefix”: “path/to/file.txt”

};

versions = myBucket.listAllVersions(versionsRequest);

Power

VERSIONING: CAUTION

You pay for every version

Older versions kept even when you suspend versioning

Set lifecycle rule to have old versions auto-expire after [n] days

TAGS

Power

Power

TAGS

FIND THINGS IN A
HUMAN-READABLE WAY

Power

TAGS

Key-value pairs

Up to 10 per object
Business Technical Security

Cost Center 41001 Environment Dev Compliance HIPAA

Department Security Zone Frontend Data
Sensitivity 4

Owner Bill Bridges Application Order-
Fullfilment Confidentiality Restricted

Security

EXAMPLE:
ADDING TAGS
TO OBJECTS

myBucket = application.s3ServiceObject.bucket(“your bucket
name”);

addTagsRequest = {

 “key”: “path/to/file.txt”,

 “tags” : [

 { “key”: “department”, “value”: “finance” }

 { “key”: “project”, “value”: “dashboards2022” }

]

};

awsResponse = myBucket.addTags(addTagsRequest);

Power

TAGS

Tagging Guides:

https://aws.amazon.com/answers/account-management/aws-tagging-strategies/

https://k9security.io/docs/guide-to-tagging-cloud-deployments/

Four Things

TO INFINITY
…AND BEYOND

WEBSITE HOSTING

To Infinity…And Beyond

Great for static/JAMstack sites

S3 AS A DATABASE

To Infinity…And Beyond

Amazon Athena

S3 Select

S3 EVENTS

To Infinity…And Beyond

Lambda listeners

S3 Batch

MORE SECURITY

To Infinity…And Beyond

MFA on delete

Named access points

Attribute (or tag)-based access control (ABAC)

REPLICATION

To Infinity…And Beyond

Automatic cross-region replication

DataSync for on–prem data

REQUESTER PAYS

To Infinity…And Beyond

You don’t pay for egress!

GO DO!

Brian Klaas
brian.klaas@gmail.com
@brian_klaas
Blog: brianklaas.net

github.com/brianklaas/awsPlaybox

Thank you!

